Multiplicity result for a critical elliptic system with concave-convex nonlinearities

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiplicity of Positive Solutions for Weighted Quasilinear Elliptic Equations Involving Critical Hardy-Sobolev Exponents and Concave-Convex Nonlinearities

and Applied Analysis 3 When a 0, we set s dp∗ 0, d and t bp∗ 0, b , then 1.1 is equivalent to the following quasilinear elliptic equations: −div ( |∇u|p−2∇u ) − μ |u| p−2u |x| |u|p t −2u |x| λ |u|q−2u |x| in Ω, u 0 on ∂Ω, 1.7 where λ > 0, 1 < p < N, 0 ≤ μ < μ N − p /p , 0 ≤ s, t < p, 1 ≤ q < p and p∗ t p N − t / N − p . Such kind of problem relative with 1.7 has been extensively studied by many...

متن کامل

A Multiplicity Result for Quasilinear Problems with Convex and Concave Nonlinearities and Nonlinear Boundary Conditions in Unbounded Domains

We study the following quasilinear problem with nonlinear boundary conditions −∆pu = λa(x)|u|p−2u+ k(x)|u|q−2u− h(x)|u|s−2u, in Ω, |∇u|p−2∇u · η + b(x)|u|p−2u = 0 on ∂Ω, where Ω is an unbounded domain in RN with a noncompact and smooth boundary ∂Ω, η denotes the unit outward normal vector on ∂Ω, ∆pu = div(|∇u|p−2∇u) is the p-Laplacian, a, k, h and b are nonnegative essentially bounded functions...

متن کامل

Multiple results for critical quasilinear elliptic systems involving concave-convex nonlinearities and sign-changing weight functions∗

This paper is devoted to study the multiplicity of nontrivial nonnegative or positive solutions to the following systems    −4pu = λa1(x)|u|q−2u + b(x)Fu(u, v), in Ω, −4pv = λa2(x)|v|q−2v + b(x)Fv(u, v), in Ω, u = v = 0, on ∂Ω, where Ω ⊂ R is a bounded domain with smooth boundary ∂Ω; 1 < q < p < N , p∗ = Np N−p ; 4pw = div(|∇w|p−2∇w) denotes the p-Laplacian operator; λ > 0 is a positive pa...

متن کامل

Existence and multiplicity of nontrivial solutions for‎ ‎$p$-Laplacian system with nonlinearities of concave-convex type and‎ ‎sign-changing weight functions

This paper is concerned with the existence of multiple positive‎ ‎solutions for a quasilinear elliptic system involving concave-convex‎ ‎nonlinearities‎ ‎and sign-changing weight functions‎. ‎With the help of the Nehari manifold and Palais-Smale condition‎, ‎we prove that the system has at least two nontrivial positive‎ ‎solutions‎, ‎when the pair of parameters $(lambda,mu)$ belongs to a c...

متن کامل

The Solvability of Concave-Convex Quasilinear Elliptic Systems Involving $p$-Laplacian and Critical Sobolev Exponent

In this work, we study the existence of non-trivial multiple solutions for a class of quasilinear elliptic systems equipped with concave-convex nonlinearities and critical growth terms in bounded domains. By using the variational method, especially Nehari manifold and Palais-Smale condition, we prove the existence and multiplicity results of positive solutions.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Boundary Value Problems

سال: 2013

ISSN: 1687-2770

DOI: 10.1186/1687-2770-2013-268